On the Grüss inequality for unital 2-positive linear maps
نویسندگان
چکیده
منابع مشابه
Unital Positive Maps and Quantum States
We analyze the structure of the subset of states generated by unital completely positive quantum maps, A witness that certifies that a state does not belong to the subset generated by a given map is constructed. We analyse the representations of positive maps and their relation to quantum Perron-Frobenius theory. PACS: 03.65.Bz, 03.67.-a, 03.65.Yz
متن کاملon the effect of linear & non-linear texts on students comprehension and recalling
چکیده ندارد.
15 صفحه اولAn Ostrowski-Grüss type inequality on time scales
for all x ∈ [a, b]. This inequality is a connection between the Ostrowski inequality [12] and the Grüss inequality [13]. It can be applied to bound some special mean and some numerical quadrature rules. For other related results on the similar integral inequalities please see the papers [6, 10, 11, 14] and the references therein. The aim of this paper is to extend a generalizations of Ostrowski...
متن کاملAn Inequality for Linear Positive Functionals
Using P0-simple functionals, we generalise the result from Theorem 1.1 obtained by Professor F. Qi (F. QI, An algebraic inequality, RGMIA Res. Rep. Coll., 2(1) (1999), article 8).
متن کاملIrreducible Positive Linear Maps on Operator Algebras
Motivated by the classical results of G. Frobenius and O. Perron on the spectral theory of square matrices with nonnegative real entries, D. Evans and R. Høegh-Krohn have studied the spectra of positive linear maps on general (noncommutative) matrix algebras. The notion of irreducibility for positive maps is required for the Frobenius theory of positive maps. In the present article, irreducible...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Operators and Matrices
سال: 2016
ISSN: 1846-3886
DOI: 10.7153/oam-10-38